a2 United States Patent

Rijshouwer et al.

US009490848B2

US 9,490,848 B2
Nov. 8, 2016

(10) Patent No.:
45) Date of Patent:

(54) DATA HANDLING SYSTEM COMPRISING

MEMORY BANKS AND DATA

REARRANGEMENT

(75) Inventors: Erik Rijshouwer, Findhoven (NL);
Cornelis Hermanus van Berkel, Heeze

(NL)
(73)
")

Assignee: NXP B.V., Eindhoven (NL)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 720 days.

@
(22)

Appl. No.: 12/994,061

PCT Filed: May 19, 2009

(86) PCT No.:

§ 371 (e)(D),
(2), (4) Date:

PCT/IB2009/052081

Nov. 22, 2010

(87) PCT Pub. No.: W02009/141789

PCT Pub. Date: Nov. 26, 2009

Prior Publication Data
US 2011/0078360 Al Mar. 31, 2011

(65)

(30) Foreign Application Priority Data

May 21, 2008 (EP) 08104057

(51) Int. CL
HO3M 13/27
G1IC 7/10
HO3M 13/00
U.S. CL
CPC

(2006.01)

(2006.01)

(2006.01)

(52)

HO3M 13/2707 (2013.01); G1I1C 7/1006

(2013.01); HO3M 13/6566 (2013.01)
Field of Classification Search

CPC GOG6F 9/3879; GOGF 9/3897, GOG6F

12/0246; GOGF 11/1662; GO6F 11/302;

GO6F 11/3051; GO6F 11/3055; GOG6F

11/3093; G11C 7/1006; HO3M 13/2707,

HO3M 13/6566

(58)

711/5, 100, 105, 106, 114, 165, 166,
711/205-208; 365/220, 222
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,938,763 A 8/1999 Fimoff et al.
6,360,311 Bl 3/2002 Zandveld et al.
(Continued)
FOREIGN PATENT DOCUMENTS
CN 101032085 A 9/2007
EP 1324 502 A2 7/2003
(Continued)

OTHER PUBLICATIONS

Vanne, J., et al. “Enhanced Configurable Parallel Memory Archi-
tecture”, Proc. Euromicro Symp. of Digital System Design, 2002,
Sep. 4-6, 2002, IEEE, Piscataway, NJ, US, pp. 28-35, (Sep. 4,
2002).

(Continued)

Primary Examiner — Zhuo Li

(57) ABSTRACT

It is an object of the invention to provide a memory
architecture that can handle data interleaving efficiently.
This and other objects are achieved by the system according
to the invention. The data handling system, is configured for
receiving at an input a plurality of commands. The system
comprises: a plurality of memory banks; a distributor con-
nected to the input and having a plurality of distributor
outputs. Each specific one of the plurality of memory banks
(106) is connected to a specific one of the plurality of
distributor outputs. The distributor comprises a permutator
for designating for each specific command a specific dis-
tributor output. The distributor distributes the specific com-
mand to the specific designated distributor output. The
permutator has a control input and the designating is recon-
figurable under the control of reconfiguration data received
at the control input.

9 Claims, 4 Drawing Sheets

Distributor Access | | || Memory

Modules Bank
110 112
Access |Li,| Memory
:_| 01 Module Bank ? 03

Access HER Memory
Module Bank

Access AN Memory
J Module Bank

104 106

US 9,490,848 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

6,415,353 B1*

6,901,492 B2

7,170,849 Bl
2003/0014700 Al
2007/0195627 Al

5/2005 Berens et al.
1/2007 Arivoli et al.
1/2003 Giulietti et al.
8/2007 Kim

FOREIGN PATENT DOCUMENTS

EP 1324502 A2 * 7/2003
EP 1746 731 Al 1/2007
EP 1931 035 Al 6/2008
WO 2009141789 Al 112009

7/2002 Leungccccoceveneneee

... 711/106

OTHER PUBLICATIONS

International Search Report and Written Opinion for Int’l patent
appln. No. PCT/IB2009/052081 (Oct. 26, 2009)xxx.

International Search Report and Written Opinion in PCT/IB2009/
052078 dated Oct. 6, 2009.

Eero, Aho, “Configurable Data Memory for Multimedia Process-
ing”, Journal of Signal Processing Systems, vol. 50, No. 2, Aug. 16,
2007, pp. 231-249.

Harper, D, et al. “Vector Access Performance in Parallel Memories
Using a Skewed Storage Scheme”, IEEE Trans. on Computers, vol.
C-36, No. 12, pp. 1440-1449 (Dec. 1987).

Hoffman, J., et al. “Overview of the Scalable Communications
Core,” IEEE Symposium on VLSI (ISVLSI *07), pp. 3-8 (2007).

* cited by examiner

US 9,490,848 B2

Sheet 1 of 4

Nov. 8, 2016

U.S. Patent

€0

901

Joeyq
AIOUWIOIN]

A

[81

yueq
AJOWRN

A

Auey
AJOUIDIN

bl

Juey
AJOWIDTA

c0/

JOJBINUIID J

009~

I0INQIYSI(T

o

c0l

US 9,490,848 B2

Sheet 2 of 4

Nov. 8, 2016

U.S. Patent

“gor -

A

901 70l
Juey S[NPO
ATOurdp §S000Y
ey SINPOIN
ﬁ Axowanf §5900Y
Aued S[nPON
AJouis 88900y

4] oLl
yuegd SMMPOA
KJouray $8900V

10INqINSIT

Z 814

o

US 9,490,848 B2

Sheet 3 of 4

Nov. 8, 2016

U.S. Patent

vOl

S[MPON
$S900Y

¢ ‘31

O[NPOIA]
$5000Y

SMPOIA
SS90V

S[PO
$S900Y

A4

onpowr ul[eIS

008"

e T

10MqINSI(T

c0l

US 9,490,848 B2

Sheet 4 of 4

Nov. 8, 2016

U.S. Patent

M

20,

ommpour
UoneINIYU0daYy
/

/
004

fojeinune d

/

/
009

"SI

US 9,490,848 B2

1
DATA HANDLING SYSTEM COMPRISING
MEMORY BANKS AND DATA
REARRANGEMENT

FIELD OF THE INVENTION

The invention relates to a data handling system.

In particular, the invention relates to a data handling
system, wherein: the system is configured for receiving at an
input a plurality of commands, the system comprises a
plurality of memory banks.

The invention also relates to a method for data handling.

The invention also relates to a method for rearranging
data.

The invention also relates to a computer program product.

BACKGROUND OF THE INVENTION

In virtually every modem transmission or reception
device, such as those for, e.g., GSM and UMTS R99, a data
interleaving step, i.e. a data reordering step, is used.

Data interleaving is the process of reordering the data
according to some predetermined pattern. Typically, the
interleaving uses a block interleaving pattern, wherein the
data is organized in a rectangular matrix. First the whole
interleaving block is written to the memory according to a
well-chosen access sequence, and then the block is read out
by means of the second access sequence. For example, the
matrix is written in the order of the rows but read in the order
of the columns. These sequences combined implement the
required interleaving operation.

Note that by using an interleaving scheme’s access
sequences, while swapping the reading and writing com-
mands, its associated deinterleaving scheme is obtained. For
example, the matrix is written in the order of the columns but
read in the order of the rows. A data interleaver and
corresponding deinterleaver are typically implemented as
write and read sequences to a Random access memory
(RAM).

Interleaving has an inherent high latency associated with
its operation because of its data dependencies.

Interleaving has numerous applications in the area of
computer science, error correcting codes and communica-
tions. For example, if data is interleaved prior to encoding
with an error correcting code the data becomes less vulner-
able to burst errors. The latter is especially important for
communications, including mobile communications, but is
also used for data storage. Data interleaving can also be used
for multiplexing multiple sources of digital streams, for
example, to combine a digital audio stream and a digital
video stream into one multimedia stream.

If the required data-rates are low, often programmable
solutions on a DSP or micro-controller are used. For higher
data-rates and/or throughput requirements a random access
memory with dedicated address generation hardware is
used, for example, for WLAN.

The throughput requirements on a memory used for
interleaving have been constantly rising. The most important
reason for this is the increasing data rates required by the
communication standards. To give an indication of this
increase, the throughput requirements for 3 G communica-
tion standards are given below in Table 1 below, along with
a next generation in the Table 2 below. Note: Msbit/s stands
for Mega soft-bits per second, which is a measurement of
data rate. One soft-bit corresponds with 4 or 5 real bits,
depending on the precision used by the demodulator.

15

20

40

45

50

55

60

65

TABLE 1
3G Standards
Standard Throughput
802.11a/g 72 Msbit/s
DAB 4.6 Msbit/s
DVB 81 Msbit/s
UMTS 8.8 Msbit/s
HSDPA 42 Msbit/s
TABLE 2
4G Standards
Standard Throughput
UMTS LTE 300 Msbit/s
802.11n 600 Msbit/s

Furthermore, upstream and downstream activities often
have to be supported simultaneously, leading to a higher
architecture load. Also, multi-standard solutions not only
have to process the sum of the individual data rates, but can
be stressed even further because of tight latency constraints.
The result of these developments is that the sum of access
rates on the memory has become much larger than the
maximally attainable memory frequency.

If a multi-bank memory is used, a new problem arises: if
two or more elements of an access vector are assigned to the
same bank a so-called conflict occurs since a single bank can
only process one element at a time. For example, such a
conflict occurs if an access vector, i.e. a command vector,
contains two write commands destined for the same memory
bank. The distributor can resolve this conflict by splitting the
access vector up into two new access vectors such that each
new access vector comprises only one of the two addresses
that gave rise to the conflict. As a result, two cycles are used
to process the original access vector. This corresponds with
a memory efficiency of 50%.

Depending on the characteristics of the interleaving
scheme, it is seldom possible to process many consecutive
access vectors without having bank conflicts.

The worst-case scenario for bank conflicts occurs for
certain block interleaving access patterns. If the number of
banks, P, is a divider of the number of columns, C, of the
matrix, i.e. the block interleaving function, a total of C bursts
of bank conflicts occur. In this case the memory efficiency
drops to only 1/P*100%. In particular, this situation occurs
in the situation where the number of columns is equal to the
number of banks used.

It is a problem of known memory architectures that they
are inefficient if used for data interleaving.

SUMMARY OF THE INVENTION

It is an object of the invention to provide a memory
architecture that can handle data interleaving efficiently.

This and other objects are achieved by the system accord-
ing to the invention. The data handling system is configured
for receiving at an input a plurality of commands. The
system comprises: a plurality of memory banks; a distributor
connected to the input and having a plurality of distributor
outputs. Each specific one of the plurality of memory banks
(106) is connected to a specific one of the plurality of
distributor outputs. The distributor comprises a permutator
for designating for each specific command a specific dis-

US 9,490,848 B2

3

tributor output. The distributor distributes the specific com-
mand to the specific designated distributor output. The
permutator has a control input and the designating is recon-
figurable under the control of reconfiguration data received
at the control input.

The inventors have realized that for a given access pattern
caused by, e.g., an interleaving scheme, bank conflicts can
be avoided by way of a suitable permutation of the com-
mands. If the permutator causes a better distribution of the
commands over the memory banks the number of conflicts
is reduced. However, a permutation that is beneficial for
some access pattern may be disadvantageous for another.
The term ‘disadvantageous’ means that the number of con-
flicts introduced by the permutation is larger than the num-
ber of conflicts it prevents. A solution to this dilemma is to
make the permutator reconfigurable so that for each inter-
leaving scheme a beneficial permutation or no permutation
at all, can be selected.

It is a problem that some interleaving patterns, including
some interleaving patterns that are needed for common
communication standards, give rise to many bank conflicts.
The situation described above will happen often for such
interleaving patterns.

This problem is solved by using a permutator. The per-
mutator applies a permutation to the distribution, such that
an interleaving pattern that causes many commands to be
distributed to a single memory bank is transformed into a
pattern in which those commands are distributed among
multiple banks.

If the distributor receives a plurality of commands that
without a permutator would give rise to many bank conflicts,
i.e. many commands would be sent to the same memory
bank, the permutator breaks this pattern by assigning or
redistributing some of the commands to a different memory
bank and possibly via a corresponding access module.

For example, if, without a permutator, a first command
and a second command were sent to a first memory bank,
then the permutator could resolve this conflict by assigning
the first command to the first memory bank but the second
command to a second memory bank, different from the first.

Note that the permutator can operate on read commands
and write commands. It is convenient that a read command,
issued to retrieve an element stored in response to a previous
write command, is routed through the same permutator
operating in the same configuration. In that way a read or
write command comprising the same index will read from,
or write to, the same physical location.

The permutator could be comprised in a clearly defined
module, but on the other hand, the functionality of the
permutator could be combined with the functionality of
other modules, especially with a module for processing
addresses or indices. For example, the permutator may be
combined with the distributing of the distributor. The per-
mutator could also be implemented outside the distributor,
for example, in a separate module connected to the distribu-
tor outputs and the inputs of the plurality of access modules.

A permutator has the advantage that access modules will
be fully occupied less frequently. As a result of using the
permutator, the capacity of the access module may be
reduced, leading to a cheaper design.

The invention using a permutator may be used to advan-
tage in any device or for any application requiring high data
rates, even if the memory access behavior is not balanced
over the banks.

Through the control input a permutation can be selected
that reduces the number of memory bank conflicts, for an
intended subsequent use of the data handling system. As the

20

25

30

40

45

50

60

4

number of memory bank conflicts is reduced the data
handing system works more efficiently since more command
can be handled in parallel. Since the permutation is recon-
figurable through the control input, more than one access
scheme, e.g., interleaving scheme, can be supported in an
optimal, or near optimal, or at least in a more suitable, way.

A command can comprise, or consist of, an index repre-
senting a memory location. An index could be a memory
address, but the index could also be an index as used in a
block interleaving pattern. The range of indices need not
encompass the whole address range of the memory. A
translation function may be necessary to convert an index
into a physical address. The translation function may com-
prise adding an offset to the index. The translation function
may, as an intermediate step, translate the index to a virtual
address. The translation function may be comprised in the
distributor and/or a memory bank. The translation function
may also be comprised in a translator unit, such as a memory
management unit, employed by the data handling system.

The plurality of commands can be organized temporally
in many ways, e.g., the commands may arrive at the input
sequentially or in parallel. There is no need for the com-
mands to arrive according to a fixed schedule but the
commands can arrive as soon as a processing device
upstream makes them available. In this way, the data han-
dling system can be used in an asynchronous design.

The invention may be used to advantage in any device or
for any application requiring high data rates, as long as the
memory access behavior is more or less balanced over the
banks.

In a practical embodiment of the data handling system
according to the invention, at least one specific memory
bank of the plurality of memory banks is connected to the
specific distributor output through a specific access module.
The specific access module is configured to buffer at least
one command occurring at the specific distributor output.

If a bank conflict occurs in the plurality of commands, the
distributor does not need to resolve this conflict, but can
continue regular operation, since each bank has a corre-
sponding access module to buffer the conflicting commands.
These access modules enable the decoupling of commands
for the different banks by rescheduling.

As a result all memory banks can, if the access modules
are non-empty, store or retrieve a data object in each cycle,
whereas without the plurality of access modules, some of the
memory banks would be idle when a conflict occurs.

Because the permutation is selected to be well suited to
the intended use of the data handling system, the number of
bank conflicts will be reduced, compared to the number of
bank conflicts in a default distribution pattern. The necessary
size of the buffer in an access module is determined by the
number of consecutive conflicts the access module should be
able to handle. If fewer consecutive conflicts occur, the
access buffers can be smaller.

For a particular bank, all read accesses or write accesses
are still executed in the relative order in which they were
received by the distributor. As a result no Read after Write
(RAW), Write after Read (WAR) or Write after Write
(WAW) hazards can occur in this architecture.

A hazard preventing control means, such as a means for
stalling the data handling system before a hazard occurs, is
not needed for the architecture according to the invention.
This has the advantage of a higher throughput of the data
handling system and less complicated hardware.

As a result of processing a plurality of read commands, a
buffer comprised in an access module may get full. If an
access module is full, the data handling system cannot

US 9,490,848 B2

5

accept new read commands that could be distributed to the
distributor output that is connected to the access module that
is full. If such a situation is unaccounted for, the data
handling system may fail or at least the throughput will
suffer. An access buffer may become full if a plurality of
commands is received with many bank conflicts, that is,
many commands for the same bank. The occurrence of full
access buffers is reduced with a reconfigurable permutator.

In a practical embodiment of the data handling system
according to the invention, each specific memory bank of the
plurality of memory banks is connected to the specific
distributor output through a specific access module. The
specific access module is configured to buffer at least one
command occurring at the specific distributor output.

In a practical embodiment of the data handling system
according to the invention, the system comprises an output,
wherein: the plurality of commands comprises at least one
read command; and each specific one of the plurality of
memory banks is configured for producing at the output a
particular data object in response to receiving a particular
read command from the distributor.

Reducing conflicts is especially important for an input
sequence of read commands in the presence of access
modules. Two conflicting parallel read commands end up in
the same access buffer one after the other. As a result they
will end up at different places in the output data objects, e.g.,
in different output data object vectors. In theory, a user of the
data handling system, e.g. a software programmer, could
account for the rearrangement that takes place as a result of
conflicts. For example, this can be done, by introducing such
permutations in a sequence of read commands that the
permutation precisely counteract the rearrangement that
occurs as a result of conflicts. Clearly, this is an undesirable
situation as it adds significant additional complexity to the
software. Reducing conflicts, in an ideal situation, to zero,
mitigates or solves this problem.

In a practical embodiment of the invention, the plurality
of commands comprises at least one write command. The
write command comprises a data object. Each specific one
of the plurality of memory banks is configured for storing a
particular data object in response to receiving a particular
write command from the distributor.

Also for write commands, bank conflicts are problematic,
as they cause the data handling system to operate with lower
efficiency.

In a preferred embodiment of the invention, the plurality
of commands is organized as a first sequence of command
vectors. The data objects appearing at the output are orga-
nized as a second sequence of data object vectors.

Vector machines often employ multi-bank architectures.
For such configuration the invention is therefore particularly
advantageous.

In a preferred embodiment of the invention each specific
command comprises a specific index. The permutator is
arranged to designate for each specific command a specific
distributor output corresponding to a processing of the
specific index.

Using the index allows the permutator to assign a subse-
quent command with an index to the same memory bank to
which a former command with the same index was assigned.
Using the index the permutator can achieve this without any
other knowledge of the access patterns that are to be used
with the data handling system. This makes for a less
complicated design, as the permutator does not need infor-
mation in advance on the precise access patterns.

In a preferred embodiment of the invention the permutator
is further arranged to compute a specific address by pro-

10

15

20

25

30

35

40

45

50

55

60

65

6

cessing the specific index in accordance with an address
function. Each memory bank is arranged to store or retrieve
a specific data object in accordance with the specific address.
The processing of the specific index comprises adding the
specific address to substantially the specific index.

A particularly convenient way to permute the commands
is by first processing the indices with an address function.
The address that results from processing an index with an
address function can represent the physical location in a
memory bank where the command is to store or to retrieve.
The address may also be a representation for an offset in the
memory bank, or displacement with respected to a prede-
termined element in the memory bank. The address may also
represent a virtual, rather than a physical, location. The use
of virtual addresses is well known to a person skilled in the
art.

A cyclic permutation shift is accomplished, in the pro-
cessing of the specific index to designate a specific distribu-
tor output, by comprising the adding of the specific address
to the specific index. After the processing step of adding the
specific address to the specific index additional processing
may be done. For example, a modulo operation, i.e. a
remainder after division operation, in particular, computing
modulo the number of memory banks, can be done.

Bank conflicts arise when a sequence of read commands
or write commands, in combination with the number of
memory banks, is particularly unfortunate. With said com-
bination it may happen that many bank conflicts arise. For
example, for the block interleaving pattern, this happens if
the number of banks, ‘P’, is a divisor of the number of
columns, ‘C’.

By adding the address to the index, commands that would
otherwise be distributed to the same bank, need access to
different banks. In this way, the cyclic permutation shift
resolves many of the bank conflicts.

If the permutator reduces the number of bank conflicts
more than the permutator introduces new bank conflicts for
some particular interleaving pattern, the permutator is
advantageously applied. This can be tested by simulating an
interleaving pattern, first without the permutator, and then
with the permutator. The number of bank conflicts is counted
in both simulations. If the simulation with permutator gives
fewer bank conflicts than the simulation without the permu-
tator, then the permutator is advantageously applied.

In a preferred embodiment of the invention the distributor
further comprises a stalling module. At least one distinct
access module is arranged to signal the stalling module
whether the distinct access module is substantially full. The
stalling module is arranged to temporarily prevent the dis-
tributor from distributing.

If an access module is substantially full, the data handling
system must temporarily be prevented from taking in more
input, as those cannot be handled. To achieve this, the
distributor may comprise a stalling module to collect the
stalling information from the plurality of access modules
and to forward this information to those sources that may
supply the data handling system with more commands.

This feature has the advantage that data loss, unpredict-
able behavior or, worse, a crash of the data handling system
is prevented.

The condition of ‘substantially full” must be considered in
conjunction with the mode of operation of the access mod-
ules and the data handling system, combined with the
operation of a containing system in which the data handling
system is comprised. The access modules must give a signal
ahead of time for the distributor and/or other modules in the
containing system to act in time upon the signal. For

US 9,490,848 B2

7

example, if the operation of the data handling system and/or
the containing system is pipe-lined, some commands may be
in the pipe line at the moment a stalling signal is given. The
commands already in the pipe line may not be conveniently
delayable. Therefore allowance must be made for those
objects by giving the stalling signal ahead of time. For
example, if a certain command cannot be delayed, for
example, if the distributor is pipe-lined, the access module
must give a stalling signal when capacity for only one more
command is left.

The method according to the invention for data handling
comprises the steps of: receiving a reconfiguration data;
reconfiguring a designating under the control of the recon-
figuration data; receiving a specific command; designating
for the specific command a specific memory bank; distrib-
uting the specific command to the specific memory bank;
and retrieving and/or storing a specific data object in
response to the specific command.

Other processing steps may be done before, after or in
between the steps. The reconfiguration need not be done
each time the system is used. The system may use the
permutation of the previous use, or may use a default
permutation.

The method according to the invention for rearranging
data for use in a data handling system comprises the fol-
lowing steps: writing a set of data objects according to a first
plurality of write commands; reading the set of data objects
according to a second plurality of read commands.

Other processing steps may be done before, after or in
between the steps. Moreover, a part of the reading operations
and writing operations can be interleaved, i.e. a first number
of write commands can be performed, then a second number
of read commands, then a third number of write commands
and then a fourth number of read commands, etc.

The computer program product comprises computer code
for performing the steps of any of the methods according to
the invention.

The computer program product includes among others a
server comprising the computer code, a storage unit, a
processor. The computer code can be fabricated using vari-
ous well known high-level programming languages, such as,
C, C++ or Pascal. The computer code can alternatively be
fabricated using low-level programming languages, such as
assembly, machine codes or microcode.

For completeness reference is made to U.S. Pat. No.
5,938,763, which discloses a system for interleaving data
using an architecture built on the principle of memory reuse
by means of the reuse of read addresses, i.e., every read
access is followed by a write access to the same memory
address.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is explained in further detail, by way of
example and with reference to the accompanying drawings,
wherein:

FIG. 1 is a block diagram illustrating a first embodiment
of the data handling system according to the invention.

FIG. 2 is a block diagram illustrating a second embodi-
ment of the data handling system according to the invention.

FIG. 3 is a block diagram illustrating a stalling module
comprised in a distributor.

FIG. 4 is a block diagram illustrating an embodiment of
a reconfiguration module.

10

30

35

40

45

50

55

60

65

8

Throughout the Figures, similar or corresponding features
are indicated by same reference numerals.

LIST OF REFERENCE NUMERALS

100 a data handling system

101 an input

102 a distributor

103 an output

104 a plurality of access modules
106 a plurality of memory banks
110 an access module

112 a memory bank

600 a permutator

700 a reconfiguration module
702 a control input

800 a stalling module

DETAILED EMBODIMENTS

While this invention is susceptible of embodiment in
many different forms, there is shown in the drawings and
will herein be described in detail one or more specific
embodiments, with the understanding that the present dis-
closure is to be considered as exemplary of the principles of
the invention and not intended to limit the invention to the
specific embodiments shown and described.

For convenience, the data handling system is described
for the general embodiment, in which a distributor receives
a sequence of command vectors and, in so far the system
produces output, an output sequence of data object vectors.

In FIG. 1 a block diagram is shown illustrating a first
embodiment of the data handling system (100). The dis-
tributor (102) receives at an input (101) a first sequence of
command vectors. The first sequence of command vectors
can comprise read command vectors and write command
vectors. A typical read command comprises an index, such
as an address. A typical write command comprises an index
and a data object.

The distributor (102) distributes the commands among a
plurality of distributor outputs. The plurality of distributor
outputs is connected to a plurality of memory banks (106).
The connection is done in such a way that each distributor
output corresponds to one respective one of memory banks
(106). Memory bank (112) is typical for all the memory
banks. Each memory bank is capable of retrieving data
objects in response to an index or address. Each memory
bank is capable of storing a data object.

The distributor (102) comprises a permutator (600) for
designating for each specific command a specific distributor
output. The permutator (600) has a control input (702), i.e.
an input for reconfiguration data and the designating is
reconfigurable under the control of reconfiguration data
received at the control input (702).

During operation the distributor (102) receives a sequence
of command vectors. Typically, first a sequence of write
command vectors is received and second a sequence of read
command vectors. A write command vector comprises mul-
tiple write commands. If a write command vector is received
by the distributor (102), the permutator (600) designates a
distributor output for each write command in the write
command vector. The distributor (102) distributes the write
commands to the designated distributor outputs.

If a bank conflict occurs, i.e. if two write commands must
be sent to the same memory bank, the distributor (102) splits
the write command vector into two or more new write
command vectors, such that the write commands that gave

US 9,490,848 B2

9

rise to the conflict are distributed across two new write
command vectors. Alternatively, the distributor (102) may
reject such a command vector, possibly generating an error
signal.

After the sequence of write command vectors the dis-
tributor (102) typically receives a sequence of read com-
mand vectors. A read command vector comprises multiple
read commands. If a read command vector is received by the
distributor (102), the permutator (600) designates a distribu-
tor output for each read command in the read command
vector. The distributor (102) distributes the read commands
to the designated distributor outputs.

As the memory banks (106) receive read commands, they
will retrieve the objects stored at the indicated places. As
each memory bank outputs data objects, they will be col-
lected into an output data object vector at the output (103).
In an ideal situation, the first memory bank will output to the
first element of the output data object vector, the second
memory bank will output to the second element of the output
data object vector, and so on. Some other association
between memory banks (106) and output vector places may
also be chosen. A relation between memory banks (106) and
output places in an output vector need not be fixed.

If no conflicts occur in the read commands, i.e. there are
no two read commands in the same read command vector
that address the same memory bank, then the output of the
memory banks (106) can be directly combined into an
output data object vector.

However, if conflicts do occur, a vector collector may be
needed. The vector collector ensures that only one read
command vector is active in the system at the same time, by
stalling the system while a read command vector with
conflicts is being processed. If the read command vector
comprises two read commands, that address the same
memory bank, the system will spend an additional clock
cycle to retrieve the two corresponding data objects. After all
the data is retrieved, the vector collector assembles the
output data object vector and allows the system to receive
the next read command vector.

The distributor (102) distributes the contents of the com-
mand vectors among the plurality of memory banks (106).
The distributor (102) distributes a read command to that
memory bank that contains the requested data object. Typi-
cally the read command comprises an index that is indicative
of the physical location from which the data is to be
retrieved. The distributor (102) selects the distributor output
connected to the memory bank that comprises the physical
location indicated by the index.

The distributor (102) distributes a write command to that
distributor output that is connected to a memory bank that is
to contain the data object that was supplied with the write
command. Typically the write command comprises an index
that is indicative of the physical location at which the data
is to be stored. The distributor (102) selects the distributor
output connected to the memory bank that comprises the
physical location indicated by the index.

In FIG. 2 a block diagram is shown, illustrating a second
embodiment of the data handling system (100). The dis-
tributor (102) receives at an input (101) a first sequence of
command vectors. The first sequence of command vectors
can comprise both read command vectors and write com-
mand vectors. A typical read command comprises an index,
such as an address. A typical write command comprises an
index and a data object.

The distributor (102) distributes the commands among a
plurality of distributor outputs. The plurality of distributor
outputs is connected to a plurality of access modules (104).

25

40

45

10

The connection is done in such a way that each distributor
output corresponds to one respective access module. Access
module (110) is typical for all the access modules. Each
access module comprises a buffer that is capable of buffering
the commands that occur at the distributor output that
corresponds to that access module. An access module is
capable of buffering read commands and write commands.
The distributor (102) need not forward to an access module,
the literal command that the distributor (102) has received.
Some processing may be done on the command before or
during the distributing.

The plurality of access modules (104) is connected to a
plurality of memory banks (106). The connection is done in
such a way that each access module corresponds to one
respective memory bank. Memory bank (112) is typical for
all the memory banks. Each memory bank is capable of
retrieving data objects in response to receiving an index or
address. Each memory bank is capable of storing a data
object.

The distributor (102) comprises one distributor output that
is connected to access module (110). Access module (110) is
connected to memory bank (112). Memory bank (112) stores
a data object in response to receiving a write command.
Memory bank (112) retrieves a stored data object in
response to a read command.

An access module comprises a First In, First Out queue
(FIFO queue). The plurality of access modules (104)
decouples the processing of accesses, i.e. commands, for the
different banks, by rescheduling the accesses in time.
Accesses can now be executed out of order. This means that
banks need no longer stall each other when faced with a
collision. Higher memory efficiency can thus be attained.
Note that for reading, care may be taken that reading is done
with a suitable read order that prevents collisions. Otherwise
the order of the data might be changed.

The distributor (102) comprises a permutator (600) for
controllably designating for each specific command a spe-
cific distributor output. The permutator (600) has a control
input (702) and the designating is reconfigurable under the
control of reconfiguration data received at the control input
(702).

During operation the distributor (102) receives a sequence
of command vectors. The distributor (102) distributes the
contents of the command vectors among the plurality of
access modules (104). The distributor (102) distributes a
read command to that distributor output that is connected,
via an access module, to a memory bank that contains the
requested data object. Typically the read command com-
prises an index that is indicative of the physical location
where the data is to be retrieved. The distributor (102)
selects the distributor output connected to the memory bank
that comprises the physical location indicated by the index.

The distributor (102) distributes a write command to that
distributor output that is connected, via an access module, to
a memory bank that is to store the data object that was
supplied with the write command. Typically the write com-
mand comprises an index that is indicative of the physical
location at which the data is to be stored. The distributor
(102) selects the distributor output connected to the memory
bank that comprises the physical location indicated by the
index.

Typically the distributor (102) works in cycles. In each
cycle one command vector is distributed among the dis-
tributor outputs. If a command needs access to a particular
memory bank, the command is sent to the particular access
module that is connected to that memory bank. The particu-
lar access module temporarily buffers the command until the

US 9,490,848 B2

11

memory bank can process the command. If two or more
commands need access to the same memory bank, the two
or more commands are all sent to the same access module.
The access module buffers the commands in the order
wherein they were received and forwards the commands to
his memory bank, one at a time, when the memory bank can
process the command. Typically the memory bank works in
cycles, and can process one command in each cycle.

The data handling system (100) can be made using
dedicated hardware, such as electronic circuits that are
configured according to this invention. The data handling
system (100) (106) can be made from generic hardware
controlled using software, or the data handling system (100)
may comprise a combination of dedicated hardware, generic
hardware and software to implement the data handling
system (100).

The buffers and memories used, such as memory bank
(112) or access module (110) or comprised in the distributor
(102) can be made from regular RAM memory, such a
DRAM, SRAM or SDRAM, flash memory, magnetic stor-
age, such as a hard disk, or optical storage, or any other kind
of suitable storage. Optionally a memory bank (112) could
use ROM memory as well. In case ROM is used, the data
handling system (100) can only be used for the retrieval of
data objects, not for storage.

The connections, between the distributor (102) and the
plurality of access modules (104), and between the plurality
of access modules (104) and the plurality of memory banks
(106) can be fabricated in a number of ways. For example,
the connections can use a bus architecture, or the connec-
tions can comprise multiple parallel connections, etc.

The distributor (102) is used advantageously in a vector
architecture wherein the distributor (102) receives a
sequence of command vectors. However, the distributor
(102) can also be used if the sequence is a linear sequence
of commands. In that case the distributor (102) accepts a
number of these commands and regards the set as a vector.

The data handling system (100) according to the invention
has numerous advantages. Since the data handling system
(100) uses a plurality of access modules (104), the data
handling system (100) can gracefully handle a plurality of
commands that would otherwise give rise to one or more
memory bank conflicts. In case of a conflict there is no need
to stall the data handling system (100) or take other correc-
tive action. Commands that address the same memory bank
are buffered in an access module and handled by the memory
bank in turn. Especially for the case of write command
vectors this works conveniently. For read command vectors,
a reordering of the order of the read command may occur.

If the reading sequence is chosen such that no bank
conflicts will occur, i.e. no vector contains two read com-
mands destined for the same memory bank, the data objects
retrieved in response will not be redistributed across mul-
tiple data object vectors.

If the reading sequence causes bank conflicts, the dis-
tributor (102) can solve these in the same way as conflicts in
a writing sequence. However, it may happen that a generated
output data vector sequence does not correspond in a one-
to-one fashion with the sequence of read command vectors.
Should this be a problem, it can be solved at the side of the
application using the data handling system. Since the per-
mutator (600) and other components of the data handling
system (100) are deterministic, it can be predicted in
advance what output sequence will be generated, given a
certain input sequence. By permuting the read commands in
an input sequence of read commands, and resolving bank
conflicts by introducing dummy reads, an input sequence of

25

30

40

45

55

12

read command can be constructed that takes into account
possible rearrangements caused by the data handling system
(100). In this way, an input sequence of read command can
be constructed that will give the wanted output data object
vector sequence.

In one embodiment, the data handling system (100) is
used in an asynchronous design. The commands do not
arrive synchronized to a clock, but are supplied when some
other component needs to read or write a data object. As a
result the commands can come one by one, or some at a time.

Below the effect of access queues is illustrated with a
worked example.

This example makes use of 4 memory banks and imple-
ments a block interleaving scheme comprising 4 columns
and 5 rows. The sequences of virtual indices are as follows:
writing:

0,1, 2,3,4,5,6,78,9,10,11,12,13,14,15,16,17,18,19.
reading:
0,4,8,12,16,1,5,9,13,17,2,6,10,14,18,3,7,11,15,19.

Mapping these sequences to a 4 bank memory architec-
ture gives the following pairs of (bank index, address) in
vectors of 4 pairs. Here the mapping from a virtual index to
a bank index is done by computing the virtual index modulo
4, i.e. computing the remainder after division by 4. The
address is found by dividing the virtual index by 4 and
rounding down.

Note that the writing and reading sequence have been
grouped in writing command vectors, respectively in read-
ing command vectors, of each four accesses. This is con-
sistent with a vector architecture using 4 memory banks.
writing:
((0,0),(1,0),(2,0),(3,0)),((0,1),(1,1),(2,1),(3,1),((0,2),(1,2),
(2,2),(3,2)),((0,3),(1,3),(2,3),(3,3)), ((0.4),(1,4),(2,:4),(3.4)).
reading:
((0,0),(0,1),(0,2),(0,3)),((0,4),(1,0),(1,1),(1,2)),((1,3),(1,4),
(2,0),(2,1)),((2:2),(2,3),(2:4,(3,0)), ((3:1),(3,2),(3,3),(3.4)).-

Counting for each reading command vector how many
accesses each reading command vector does per bank, the
reading vector sequences looks like this:
(4,0,0,0),(1,3,0,0),(0,2,2,0),(0,0,3,1),(0,0,0,4).

The first reading command vector does four access, all to
the memory bank 0. The second reading command vector,
does 1 access to bank 0, and 3 accesses to bank 1, etc.

When a cyclic permutation is applied, the reading
sequence becomes the following:
((0,0),(1,1),(2,2),(3,3)),((0,4),(1,0),(2,1),(3,2)),((0,3),(1,4),
(2,0),(3,10),((0,2),(1,3),(2:4),(3,0)), ((0,1),(1,2),(2,3),(3.4)).
Again in terms of access per bank:
(1,1,1,1),(1,1,1,1),(1,1,1,1),(1,1,1,1),(1,1,1,1).

Comparing these results, we find that both writing
sequences have their accesses spread equally over the banks.
However, the reading sequence without a permutator is
spread unevenly over the memory banks. The reading
sequence with a permutator is spread evenly over the
memory banks. A cyclic permutation has a beneficial effect
for this interleaving scheme, since the cyclic permutation
provides a uniform distribution of accesses over the banks
per vector.

Although the access modules, comprising access queues,
may introduce additional latency to the interleaving opera-
tion, this will be acceptable for most interleaving schemes.
Especially, if the interleaving schemes is used in a latency
tolerant application.

In one embodiment of the distributor (102) each distribu-
tor output has a corresponding access module number. Each
specific read command comprises a specific index. The
distributor (102) computes a specific computed access mod-

US 9,490,848 B2

13

ule number by computing the index modulo the number of
memory banks in the plurality of memory banks (106). The
distributor (102) distributes the specific read command to
the distributor output corresponding to the specific com-
puted access module number.

In a further refinement of this embodiment of the dis-
tributor (102), the number of memory banks is a power of 2.
The computing modulo the number of memory banks is
implemented as a bitwise ‘AND’ operation with a bit mask.

FIG. 3 illustrates how a stalling module (800) may fit in
the data handling system (100). The distributor (102) com-
prises the stalling module (800). The stalling module (800)
can deliver a signal external to the data handling system
(100) indicating that the data handling system (100) is
currently unable to accommodate new commands.

In the first embodiment of the stalling module (800), the
stalling uses the following method. After an access module
receives a command from the distributor (102) for buffering,
the access module sends a confirmation signal to the stalling
module (800). The confirmation signal signals whether the
received command fits in the access module or whether the
command did not fit and was discarded. If the stalling
module (800) does not receive a confirmation signal that
signals that an access module was full and had to discard the
command, the stalling module (800) allows the distributor
(102) to proceed with the next command vector. However,
if the stalling module (800) receives a confirmation signal
indicating that an access module is full, the stalling module
(800) will then send a signal to the plurality of access
modules (104), that those access modules which buffered the
most recent command must discard the most recent com-
mand. At this point the stalling module (800) signals exter-
nally that the data handling system (100) is currently unable
to accommodate new commands. Hereafter, the distributor
(102) retries sending the same set of commands.

In a second embodiment of the stalling module (800), all
access modules signal each time to the stalling module (800)
whether they are substantially full or not. The stalling
module can signal to the access modules if the last received
command is valid or not. This stalling embodiment uses the
following method. If an access module determines that the
access module is substantially full, the access module sig-
nals to the stalling module (800) that the access module is
substantially full. If the stalling module (800) receives a
signal that at least one access module is substantially full,
the stalling modules (800) marks the last command in each
access module as invalid. At this point the stalling module
(800) signals externally that the data handling system (100)
is currently unable to accommodate new commands. If,
hereafter, the stalling method (800) receives from none of
the access modules a signal that the access module is
substantially full, the stalling module (800) causes the
distributor (102) to resend the command to the access
module that discarded a command, and the stalling module
(800) marks all commands as valid. The advantage is that no
commands need to be discarded in the access modules.

If the stalling module (800) has the data handling system
(100) stalled, the plurality of access modules (104), the
memory banks (106) continue the handling of already
accepted commands. In this way, the access modules free up
buffer space so that new commands can be accepted again.

In a further embodiment of the permutator (600), the
permutator (600) performs a processing of the received
index. According to the result, the distributor (102) distrib-
utes, i.e. selects a distributor output for, the command.

If bank conflicts are, at least to a certain extent, not
uniformly distributed over the plurality of memory banks

10

15

20

25

30

35

40

45

50

55

60

65

14

(106) then the access modules will be full more often. A full
access module may stall the system. One solution to this
problem is increasing the buffer capacity of the access
modules. However, using a permutator (600) provides a
better solution. With a permutator (600) small access mod-
ules can be used, while still avoiding bank conflicts.

A good choice for the permutator (600) is to use a relative
cyclic shift permutation. The number of shifts is indicated by
the write access vector number of the data element. The
cyclic shift permutation is, for example, suitable for the
standards: 802.11a/g, DVB, UMTS HSDPA and UMTS
R99.

The write access vector number can be obtained by
counting the write command vectors as they arrive at the
distributor (102). The first write command vectors has write
access vector number 1, the second write command vectors
has write access vector number 2, and so on. Alternatively,
if the pattern of access is known, for example, if a known
interleaving pattern is used, the write access vector number
can be obtained by a processing of the index comprised in
a command in the vector, for example, the first command.

In a further embodiment the distributor (102) makes a
provisional assignment to a distributor output for each
received index. The permutator (600) can redistribute this
provisional assignment. Alternatively, the permutating can
be functionally integrated with the distributing.

The permutation, applied by the permutator (600), is used
for a whole interleaving block. This permutation is to be
performed on the write accesses and read accesses, thereby
canceling its effect on the final element order. By performing
this permutation, the local non-uniformity of bank conflicts
is broken and the gained uniformity can be exploited for
parallelism. Since the access sequences for interleaving are
deterministic, a simulation can determine the particular
permutation resulting in the best distribution of bank con-
flicts for every individual interleaving scheme.

In one embodiment of the permutator (600), each dis-
tributor output has a corresponding access module number.
Each specific read command comprises a specific index. The
permutator (600) is arranged to compute a specific access
module number by processing the specific index in accor-
dance with a bank function. The distributor (102) distributes
the specific read command to a distributor output corre-
sponding to the specific access module number. This
embodiment of the permutator (600) could be combined
with any embodiment of the invention that uses a permutator
(600). The bank function could be computed as follows.

1. dividing the index by the number of memory banks, if
necessary rounding the result down.

2. adding the result of the division to the index.

3. computing the result of the adding modulo the number of
memory banks.

If the number of memory banks is a power of two, this
division, and other divisions, can be implemented as a
bitwise shift. Note that the result of a first number modulo
a second number can computed as follows: the first number
is divided by the second number, the result is rounded down,
this is the integer quotient. Next the second number is
multiplied by the integer quotient, the result of the multi-
plication is subtracted from the first number. The result is the
integer remainder. The integer remainder is the result of the
first number modulo the second number. The person skilled
in the art is well versed in the art of arithmetic, including
modulo operations.

This bank function can also be advantageously imple-
mented in hardware, by first selecting a memory bank
according to a number of bits of the index, for example, a

US 9,490,848 B2

15

number of the most significant bits, and second shifting to a
next memory bank a second number of times. The second
number is indicated by a second number of bits of the index,
for example, a number of the least significant bits of the
index.

In general, bank functions need not be executed by an
arithmetical processor, although this is possible. It may be
advantageously to lay down the bank functions in hardware
circuits that perform an equivalent computation. The equiva-
lent computation may only be visible in the fact that a
distributor output is chosen based on the index.

The bank function can also be computed as computing the
result of the index modulo the number of memory banks.
This bank function is, e.g., advantageous for linear reads,
e.g., an index sequence of 0, 1, 3, etc,

Those skilled in the art will appreciate that the bank
functions described above can be implemented in any num-
ber of variations and in many suitable ways, e.g., in hard-
ware, in software, or in a combination thereof, without
departing from the present invention. For example, the order
of certain operations carried out can often be varied, addi-
tional operations can be added or operations can be deleted
without departing from the invention

In FIG. 4 an embodiment of the reconfiguration module
(700) is illustrated. The permutator (600) comprises a recon-
figuration module (700). The reconfiguration module (700)
can receive a reconfiguration data at the control input (702).

In operation the reconfiguration module (700) receives a
reconfiguration data. The reconfiguration data instructs the
reconfiguration module (700) to reconfigure the permutator
(600) to use a different permutation scheme.

Making the permutator (600) reconfigurable has the
advantage that multiple interleaving schemes can be sup-
ported. It may happen that one configuration of the permu-
tator (600) is particularly effective for breaking up the
patterns causing bank conflicts for one type of interleaving,
yet is not effective or, worse, counter productive for another
interleaving scheme.

It is conceivable that a permutator (600) in a particular
configuration can remove all conflicts for one interleaving
scheme, yet introduce conflicts in another interleaving
scheme. This problem is solved by reconfiguring the per-
mutator (600) in anticipation of the interleaving scheme that
is about to be used. One way of reconfiguring is by having
multiple permutators, or multiple permutation options
within the permutator (600), and choosing one among them.

The reconfiguration data can comprise among others, one
or more of: a representation of a bank function, a represen-
tation of an address functions, and one or more parameters
for use in such functions. Also, the reconfiguration data can
comprise the particular application or operation to be per-
formed, the distributor, or a permutator (600), could select a
way of distributing i.e. adapting his selectivity, from a table
stored in a memory comprised in the distributor (102). For
example, the reconfiguration data can comprise a type of
interleaving scheme.

One way of reconfiguring is to turn a permutator (600) on
or off. It is found that already a great advantage is achieved
if the distributor (102) has the option of choosing between
two types of distribution, e.g., one with, and one without a
permutator (600).

One way to use the reconfiguration is as follows. At
manufacture, the distributor (102) is prepared for one or
more types of permutation schemes. During use, a table is
stored. In the table the optimal permutation type is kept for
each communication protocol. The table may be precom-
puted once, and stored on the device during manufacturing,

15

25

40

45

50

55

16

or stored later, for example, downloaded from a server. The
device may also try different types of permutators for each
protocol and store the permutation that worked best.

Reconfiguration has the advantage that the best option can
be applied for a particular application. For example, if the
data handling system (100) is used for multiple communi-
cation standards, each with a different interleaving scheme,
the data handling system (100) can be optimized for each
communication standard.

While the invention has been described in conjunction
with specific embodiments, it is evident that many alterna-
tives, modifications, permutations and variations will
become apparent to those of ordinary skill in the art in light
of the foregoing description. Accordingly, it is intended that
the present invention embrace all such alternatives, modi-
fications and variations as fall within the scope of the
appended claims.

The invention claimed is:

1. A data handling system, wherein the data handling
system is configured for receiving, at an input, a plurality of
commands, the data handling system comprising:

a plurality of memory banks;

a distributor connected to the input and having a plurality

of distributor outputs; and

an output, wherein the plurality of commands comprises

at least one read command and each specific one of the
plurality of memory banks is configured for producing,
at the output, a particular data object in response to
receiving a particular read command from the distribu-
tor, the plurality of commands is organized as a first
sequence of command vectors, the data objects appear-
ing at the output are organized as a second sequence of
data object vectors, each specific one of the plurality of
memory banks is connected to a specific one of the
plurality of distributor outputs, the distributor com-
prises a permutator configured to designate, for each
specific command, a specific distributor output so that
the distributor distributes the specific command to the
designated distributor output, and the permutator has a
control input configured to receive reconfiguration data
that control the designation of the specific distributor
output.

2. The data handling system as claim 1, wherein at least
one specific memory bank of the plurality of memory banks
is connected to the specific distributor output through a
specific access module that is configured to buffer at least
one command occurring at the specific distributor output.

3. The data handling system as in claim 1, wherein the
plurality of commands comprises at least one write com-
mand, the at least one write command comprises a data
object, and each specific one of the plurality of memory
banks is configured for storing a particular data object in
response to receiving a particular write command from the
distributor.

4. The data handling system as in claim 1, wherein each
specific command comprises a specific index and the per-
mutator is configured to designate, for each specific com-
mand, a specific distributor output corresponding to a pro-
cessing of the specific index.

5. The data handling system as in claim 4, wherein the
permutator is further configured to compute a specific
address by processing the specific index in accordance with
an address function, each memory bank is configured to
store or retrieve a specific data object in accordance with the
specific address, and the processing of the specific index
comprises adding the specific address to the specific index.

US 9,490,848 B2

17

6. The data handling system as in claim 1, wherein the
distributor further comprises:
a stalling module; and
at least one distinct access module that is configured to
signal the stalling module if the distinct access module
is substantially full, wherein the stalling module is
configured to temporarily disable the distributor.
7. A method of handling data and reconfiguring a permu-
tator, the method comprising:
receiving, at an input, a plurality of commands, wherein
the plurality of commands comprises at least one read
command and is organized as a first sequence of
command vectors;
designating, using the permutator, for each specific com-
mand in the plurality of commands, a specific one of a
plurality of distributor outputs;
distributing the specific command to the designated dis-
tributor output, said designated distributor output being
connected to a specific memory, wherein each memory
is configured to produce, at an output, a particular data
object in response to receiving a particular read com-
mand, and data objects appearing at the output are
organized as a second sequence of data object vectors;
receiving reconfiguration data at a control input; and
reconfiguring the designating step under the control of the
reconfiguration data.

25

18

8. The method of claim 7, further comprising:

writing a set of data objects according to a first plurality
of write commands; and

reading the set of data objects according to a second
plurality of read commands.

9. A non-transitory machine-readable storage medium

comprising:

instructions for receiving, at an input, a plurality of
commands, wherein the plurality of commands com-
prises at least one read command and is organized as a
first sequence of command vectors;

instructions for designating, using the permutator, for
each specific command in the plurality of commands, a
specific one of a plurality of distributor outputs;

instructions for distributing the specific command to the
designated distributor output, said designated distribu-
tor output being connected to a specific memory,
wherein each memory is configured to produce, at an
output, a particular data object in response to receiving
a particular read command, and data objects appearing
at the output are organized as a second sequence of data
object vectors;

instructions for receiving reconfiguration data at a control
input; and

instructions for reconfiguring the designating step under
the control of the reconfiguration data.

#* #* #* #* #*

